Krix S, Wilczynski E, Falgàs N, Sánchez-Valle R, Yoles E, Nevo U, et al. Towards early diagnosis of Alzheimer’s disease: advances in immune-related blood biomarkers and computational approaches. Frontiers in Immunology [Internet]. 2024;15. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1343900
de Jong, J., Cutcutache, I., Page, M., Elmoufti, S., Dilley, C., Fröhlich, H.*), & Armstrong, M.*) (2021). Towards realizing the vision of precision medicine: AI based prediction of clinical drug response. Brain, 144(6), 1738–1750. https://doi.org/10.1093/brain/awab108 *) equal contribution
Gootjes-Dreesbach, L., Sood, M., Sahay, A., Hofmann-Apitius, M., & Fröhlich, H. (2020). Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data. Frontiers in Big Data, 3, 16. https://doi.org/10.3389/fdata.2020.00016
Falgàs, N., Ruiz‐Peris, M., Pérez‐Millan, A., Sala‐Llonch, R., Antonell, A., Balasa, M., Borrego‐Écija, S., Ramos‐Campoy, O., Augé, J. M., Castellví, M., Tort‐Merino, A., Olives, J., Fernández‐Villullas, G., Blennow, K., Zetterberg, H., Bargalló, N., Lladó, A., & Sánchez‐Valle, R. (2020). Contribution of CSF biomarkers to early‐onset Alzheimer’s disease and frontotemporal dementia neuroimaging signatures. Human Brain Mapping, 41(8), 2004–2013. https://doi.org/10.1002/hbm.24925
Antonell, A., Tort‐Merino, A., Ríos, J., Balasa, M., Borrego‐Écija, S., Auge, J. M., Muñoz‐García, C., Bosch, B., Falgàs, N., Rami, L., Ramos‐Campoy, O., Blennow, K., Zetterberg, H., Molinuevo, J. L., Lladó, A., & Sánchez‐Valle, R. (2020). Synaptic, axonal damage and inflammatory cerebrospinal fluid biomarkers in neurodegenerative dementias. Alzheimer’s & Dementia, 16(2), 262–272. https://doi.org/10.1016/j.jalz.2019.09.001
Ochayon, D. E., Baranovski, B. M., Malkin, P., Schuster, R., Kalay, N., Ben-Hamo, R., Sloma, I., Levinson, J., Brazg, J., Efroni, S., Lewis, E. C., & Nevo, U. (2016). Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice. Cell Transplantation, 25(8), 1575–1588. https://doi.org/10.3727/096368916X690809
Liberman, A., Kario, D., Mussel, M., Brill, J., Buetow, K., Efroni, S., & Nevo, U. (2018). Cell studio: A platform for interactive, 3D graphical simulation of immunological processes. APL Bioengineering, 2(2), 026107. https://doi.org/10.1063/1.5039473
Castellani, G., & Schwartz, M. (2020). Immunological Features of Non-neuronal Brain Cells: Implications for Alzheimer’s Disease Immunotherapy. Trends in Immunology, 41(9), 794–804. https://doi.org/10.1016/j.it.2020.07.005
Baruch, K., Kertser, A., Matalon, O., Forsht, O., Braiman, S., Shochat, E., David, C., & Yoles, E. (2020). IBC‐Ab002, an anti‐PD‐L1 monoclonal antibody tailored for treating Alzheimer’s disease: Nonhuman/Lead optimization studies. Alzheimer’s & Dementia, 16(S9). https://doi.org/10.1002/alz.042978 https://www.dropbox.com/s/i5dofsxwair290q/42978_IBC-Ab002.pdf?dl=0
Roberts, C., Rochford-Brennan, H., Goodrick, J., Gove, D., Diaz-Ponce, A., & Georges, J. (2020). Our reflections of Patient and Public Involvement in research as members of the European Working Group of People with Dementia. Dementia, 19(1), 10–17. https://doi.org/10.1177/1471301219876402
Alzheimer Europe (2019) Overcoming ethical challenges affecting the involvement of people with dementia in research: recognising diversity and promoting inclusive research issues linked to restrictions of freedom of people with dementia, ISBN 978-2-9199578-0-4, Luxembourg, Alzheimer Europe
Ebinger, S., Özdemir, E. Z., Ziegenhain, C., Tiedt, S., Castro Alves, C., Grunert, M., Dworzak, M., Lutz, C., Turati, V. A., Enver, T., Horny, H.-P., Sotlar, K., Parekh, S., Spiekermann, K., Hiddemann, W., Schepers, A., Polzer, B., Kirsch, S., Hoffmann, M., … Jeremias, I. (2016). Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell, 30(6), 849–862. https://doi.org/10.1016/j.ccell.2016.11.002
Czyz, Z. T., Kirsch, S., & Polzer, B. (2015). Principles of Whole-Genome Amplification. In T. Kroneis (Ed.), Whole Genome Amplification (Vol. 1347, pp. 1–14). Springer New York. https://doi.org/10.1007/978-1-4939-2990-0_1
Sipos G, Prasanna A.N., Walter M.C., O’Connor E., Bálint B., Krizsán K., Kiss B., Hess J., Varga T., Slot J., Riley R., Bóka B., Rigling D., Barry K., Lee J., Mihaltcheva S., LaButti K., Lipzen A., Waldron R., Moloney N.M., Sperisen C., Kredics L., Vágvölgyi C., Patrignani A., Fitzpatrick D., Nagy I., Doyle S., Anderson J., Grigoriev I.V., Güldener U., Münsterkötter M., Nagy L.G. (2017) Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecology and Evolution 1(12):1931-1941. https://doi.org/10.1038/s41559-018-0469-7
Brasko, C., Smith, K., Molnar, C., Farago, N., Hegedus, L., Balind, A., Balassa, T., Szkalisity, A., Sukosd, F., Kocsis, K., Balint, B., Paavolainen, L., Enyedi, M. Z., Nagy, I., Puskas, L. G., Haracska, L., Tamas, G., & Horvath, P. (2018). Intelligent image-based in situ single-cell isolation. Nature Communications, 9(1), 226. https://doi.org/10.1038/s41467-017-02628-4